Part Number Hot Search : 
370503 TM24064 C1300 2SC5343S KTC319 1N473 HY3845 N7522
Product Description
Full Text Search
 

To Download BD6736FV Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 System Lens Driver Series for Digital Still Cameras / Single-lens Reflex Cameras
1 to 2ch Lens Drivers for Single-Lens Reflex Cameras
BD6735FV, BD6736FV
No.09014EAT03
Description The BD6735FV motor driver provides 2 Full-ON Drive H-bridge channels, while BD6736FV provides 1 Full-ON Drive H-bridge channel. ROHM's lens driver series features high voltage resistance and large current output in a compact surface mount package, making it ideally suited for smaller systems such as Single-Lens Reflex with Interchangeable Lenses. Features 1) Low ON-Resistance Power MOS output: Full-ON Drive block with 1.0 Typ. (BD6735FV) Full-ON Drive block with 0.35 Typ. (BD6736FV) 2) DMOS output allowing a range power supply: 2.0V to 8.0V (BD6735FV), 2.0V to 9.0V (BD6736FV) 3) Built-in step-up circuit for the DMOS gate voltage drive 4) Drive mode switching function 5) H bridge maximum output current: DC maximum 1.0A (BD6735FV and BD6736FV), Peak maximum 3.2A (BD6736FV) 6) UVLO (Under Voltage Lockout Protection) function 7) Built-in TSD (Thermal Shut Down) circuit 8) Standby current consumption: 0A Typ. Absolute Maximum Ratings Parameter Power supply voltage Motor power supply voltage Charge pump step-up power supply voltage Control input voltage Power dissipation Operating temperature range Junction temperature Storage temperature range H-bridge output current (DC) H-bridge output current (Peak) Symbol VCC VM VBST VIN Pd Topr Tjmax Tstg Iout Ipeak Limit BD6735FV -0.5 to +10.0 -0.5 to +10.0 -0.5 to +15.0 -0.5 to VCC+0.5 8101 -30 to +75 +150 -55 to +150 -1000 to +10002 BD6736FV -0.5 to +10.0 -0.5 to +10.0 -0.5 to +15.0 -0.5 to VCC+0.5 8101 -30 to +75 +150 -55 to +150 -1000 to +10002 -3200 to +32003 Unit V V V V mW mA/ch mA/ch
1 Reduced by 6.48mW/C over 25, when mounted on a glass epoxy board (70mm 70mm 1.6mm). 2 Must not exceed Pd, ASO, or Tjmax of 150 3 Peak=100msec
Operating Conditions (Ta=-30 to +75) Parameter Power supply voltage Motor power supply voltage Control input voltage Logic input frequency Min. logic input pulse width Symbol VCC VM VIN FIN TIN Limit BD6735FV 2.0 to 8.0 2.0 to 8.0 0 to VCC 0 to 100 0.5 BD6736FV 2.0 to 9.0 2.0 to 9.0 0 to VCC 0 to 100 0.5 Unit V V V kHz s
www.rohm.com (c) 2009 ROHM Co., Ltd. All rights reserved.
1/8
2009.06 - Rev.A
BD6735FV, BD6736FV
Technical Note
Electrical Characteristics 1) BD6735FV and BD6736FV Electrical Characteristics (Unless otherwise specified, Ta=25C, VCC=5.0V, VM=5.0V) Limit Parameter Symbol Unit Conditions Min. Typ. Max. Overall Circuit current ICCST 0 1 A PS=0V during standby operation Circuit current (BD6735FV) ICC 0.5 2.0 4.0 mA PS=H, FIN=100kHz Circuit current (BD6736FV) ICC 0.5 1.5 4.0 mA PS=H, FIN=100kHz Power saving (PS) High-level input voltage VPSH 2.0 VCC V Low-level input voltage VPSL -0.3 0.5 V High-level input current IPSH 25 50 100 A VPSH=5V Low-level input current IPSL -1 0 1 A VPSL=0V Control input (BD6735FV; INxA, INxB, PWMEN, and BD6736FV; INA, INB, PWM) High-level input voltage VINH 2.0 VCC V Low-level input voltage VINL -0.3 0.7 V High-level input current IINH 25 50 100 A VINH=5V Low-level input current IINL -1 0 1 A VINL=0V UVLO UVLO voltage VUVLO 1.5 1.9 V BD6735FV Full-ON Drive block (ch1 and ch2) Output ON-Resistance RON 1.0 1.35 Io=700mA on high and low sides in total BD6736FV Full-ON Drive block (ch1) Output ON-Resistance RON 0.35 0.5 Io=500mA on high and low sides in total
Electrical Characteristics
1000 Power dissipation : Pd [mW] 810mW
Circuit current : ICC [mA]
BD6735FV, BD6736FV
5.0 4.0 3.0 2.0 1.0 0.0 0.0 2.0
BD6735FV, BD6736FV BD6736FV Op. range Output VDS : VDSL [mV] (2.0V to 9.0V) BD6735FV Op. range (2.0V to 8.0V)
800
BD6735FV
800 600 486mW 400 200 0 0 25 50 75C 75 100 125 150
600
400
Top 75C Mid 25C Low -30C
4.0 6.0 8.0 10.0
200
Top 75C Mid 25C Low -30C 0 200 400 600 800 1000
0
Supply voltage : VCC [V]
Ambient temperature : Ta [C]
Output current : IOUT [mA]
Fig.1 Power Dissipation Reduction
Fig.2 Circuit current
Fig.3 Output ON-Voltage on High-Side
800
BD6735FV Top 75C Mid 25C Low -30C
250 200 150 100 50 0
BD6736FV
250 200 150 100 50 0
BD6736FV Top 75C Mid 25C Low -30C
Output VDS : VDSH [mV]
600
400
200
Top 75C Mid 25C Low -30C 0 200 400 600 800 1000
0 0 200 400 600 800 1000 Output current : IOUT [mA]
Output VDS : VDSH [mV]
Output VDS : VDSL [mV]
0
200
400
600
800
1000
Output current : IOUT [mA]
Output current : IOUT [mA]
Fig.4 Output ON-Voltage on Low-Side
Fig.5 Output ON-Voltage on High-Side
Fig.6 Output ON-Voltage on Low-Side
www.rohm.com (c) 2009 ROHM Co., Ltd. All rights reserved.
2/8
2009.06 - Rev.A
BD6735FV, BD6736FV
Application Circuit Diagram, Pin Function, and Pin Arrangement
Technical Note
Bypass filter Capacitor for power supply input. (p.7/8)
Power-saving (p.5/8) H : Active L : Standby
1100uF 1 PS 20 VCC Bypass filter Capacitor for power supply input. (p.7/8)
Power Save
TSD & UVLO
BST
BandGap
5 VM OUT1 OUT2 OUT3 OUT4 MGND2 MGND1
1100uF
Motor control input (p.5/8) IN1A 19 IN1B 18 IN2A 17 IN2B 16 PWMEN 15 Power Save
H bridge Level Shift Logic
& Full ON
6 7 4 3 2 8
M
Pre Driver
H bridge
Full ON
Drive mode selection (p.5/8) H : EN/IN L : IN/IN
OSC
Charge Pump
Charge Pump
10 GND
14 CPL1 0.1F
13 CPL2
12 CPH1 0.1F
11 CPH2
9 BST 1.0F
Connecting capacitors between the CPL1 and CPL2, CPH1 and CPH2, and BST and GND pins generate a BST voltage. Use caution to ensure that the voltage differential between BST and VM is 3.0V or higher, and that the BST voltage does not exceed the absolute maximum rating of 15V, especially set the BST voltage direct input.(p.5/8)
Fig.7 BD6735FV Application Circuit Diagram
1 2 3 4 5 6 7 8 9 10
VCC MGND2 OUT4 OUT3 VM OUT1 OUT2 MGND1 BST GND
PS IN1A IN1B IN2A IN2B PWMEN CPL1 CPL2 CPH1 CPH2
20 19 18 17 16 15 14 13 12 11
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
BD6735FV Pin Function Table Pin Name Function VCC Power supply pin MGND2 Motor ground pin 2 OUT4 H-bridge output pin 4 OUT3 H-bridge output pin 3 VM Motor power supply pin OUT1 H-bridge output pin 1 OUT2 H-bridge output pin 2 MGND1 Motor ground pin 1 BST Charge pump step-up power supply pin GND Ground pin CPH2 Capacitor connection pin for second charge 2 CPH1 Capacitor connection pin for second charge 1 CPL2 Capacitor connection pin for first charge 2 CPL1 Capacitor connection pin for first charge 1 PWMEN Drive mode selection pin IN2B Control input pin ch2 B IN2A Control input pin ch2 A IN1B Control input pin ch1 B IN1A Control input pin ch1 A PS Power-saving pin
Fig.8 BD6735FV Pin Arrangement (Top View)
www.rohm.com (c) 2009 ROHM Co., Ltd. All rights reserved.
3/8
2009.06 - Rev.A
BD6735FV, BD6736FV
Technical Note
Bypass filter Capacitor for power supply input. (p.7/8)
Power-saving (p.5/8) H : Active L : Standby
1100uF 20 PS 19 VCC Bypass filter Capacitor for power supply input. (p.7/8)
Power Save
TSD & UVLO
BST
BandGap
Motor control input (p.5/8)
1100uF 1 9 4 8 6 VM OUTA OUTB MGND
INA 18 INB 17
Level Shift Logic
&
H bridge
Full ON
3 7 5
Pre Driver
PWM 16 Power Save Drive mode selection (p.5/8) H : EN/IN L : IN/IN
OSC
Charge Pump
Charge Pump
10 GND
15 CPL1 0.1F
14 CPL2
13 CPH1 0.1F
12 CPH2
11 BST 1.0F
Connecting capacitors between the CPL1 and CPL2, CPH1 and CPH2, and BST and GND pins generate a BST voltage. Use caution to ensure that the voltage differential between BST and VM is 3.0V or higher, and that the BST voltage does not exceed the absolute maximum rating of 15V, especially set the BST voltage direct input. (p.5/8)
Fig.9 BD6736FV Application Circuit Diagram
1 2 3 4 5 6 7 8 9 10
VM N.C. OUTA OUTA MGND MGND OUTB OUTB VM GND
VCC PS INA INB PWM CPL1 CPL2 CPH1 CPH2 BST
20 19 18 17 16 15 14 13 12 11
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Pin Name VM N.C. OUTA OUTA MGND MGND OUTB OUTB VM GND BST CPH2 CPH1 CPL2 CPL1 PWM INB INA PS VCC
BD6736FV Pin Function Table Function Motor power supply pin H-bridge output pin A H-bridge output pin A Motor ground pin Motor ground pin H-bridge output pin B H-bridge output pin B Motor power supply pin Ground pin Charge pump step-up power supply pin Capacitor connection pin for second charge 2 Capacitor connection pin for second charge 1 Capacitor connection pin for first charge 2 Capacitor connection pin for first charge 1 Drive mode selection pin Control input pin ch1 B Control input pin ch1 A Power-saving pin Power supply pin
Fig.10 BD6736FV Pin Arrangement (Top View)
www.rohm.com (c) 2009 ROHM Co., Ltd. All rights reserved.
4/8
2009.06 - Rev.A
BD6735FV, BD6736FV
Technical Note
Function Explanation 1) Power-saving function When Low-level voltage is applied to PS pin, the IC will be turned off internally and the circuit current will be 0A (Typ.). During operating mode, PS pin should be High-level. (See the Electrical Characteristics; p.2/8) 2) Motor Control input (1) INxA and INxB pins (BD6735FV), INA and INB pins (BD6736FV) These pins are used to program and control the motor drive modes. (See the Electrical Characteristics; p.2/8, and I/O Truth Table; p.5/8) (2) PWMEN pin (BD6735FV), PWM pin (BD6736FV) When the High-level voltage is applied to the PWMEN pin (PWM pin), the I/O logic can be set to EN/IN mode. However, when the Low-level voltage is applied, the I/O logic can be set to IN/IN mode. (See the Electrical Characteristics; p.2/8, and I/O Truth Table; p.5/8) 3) H-bridge The 2-channel H-bridges can be controlled independently. For this reason, it is possible to drive the H-bridges simultaneously, as long as the package thermal tolerances are not exceeded. The H-bridge output transistors consist of Power DMOS with the charge pump step-up power supply BST. The total H-bridge ON-Resistance on the high and low sides varies with the BST voltages. 4) Charge pump Each output H-bridge on the high and low sides consists of Nch DMOS. Therefore, the gate voltage BST should be higher than the VM voltage to drive the Nch DMOS on the high side. The BD6735FV and BD6736FV have a built-in charge pump circuit that generates BST voltage by connecting an external capacitor, between CPL1 and CPL2, CPH1 and CPH2, BST and GND. In order to ensure better performance, the voltage differential between BST and VM must be 3.0V or higher, and the BST voltage must not exceed the absolute maximum rating of 15.0V. I/O Truth Table BD6735FV I/O Truth Table INPUT Drive mode PS
PWM EN
OUTPUT IN1B/2B X L H L L H H X OUT1/3 L H L Z H L L Z OUT2/4 L L H Z L H L Z Output mode Brake CW CCW Standby CW CCW Brake Standby
IN1A/2A L H H L H L H X
EN/IN H IN/IN L
H
L X
L: Low, H: High, X: Don't care, Z: High Impedance At CW, current flows from OUT1(3) to OUT2(4). At CCW, current flows from OUT2(4) to OUT1(3).
BD6736FV I/O Truth Table Drive mode EN/IN H IN/IN L L X PS
PWM
H
INPUT INA L H H L H L H X
INB X L H L L H H X
OUTPUT OUTA OUTB L L H L L H Z Z H L L H L L Z Z
Output mode Brake CW CCW Standby CW CCW Brake Standby
L: Low, H: High, X: Don't care, Z: High Impedance At CW, current flows from OUTA to OUTB. At CCW, current flows from OUTB to OUTA.
www.rohm.com (c) 2009 ROHM Co., Ltd. All rights reserved.
5/8
2009.06 - Rev.A
BD6735FV, BD6736FV
I/O Circuit Diagram
PS INxA, INxB, PWMEN (BD6735FV) INA, INB, PWM (BD6736FV) VM, MGND, OUT14 (BD6735FV)
Technical Note
VM, MGND, OUTA, B (BD6736FV)
VCC 100k
VCC 10k 100k
VCC 70k
VM
VM
OUT1, 3 3.33k OUT2, 4 VCC MGND
OUTA OUTB VM MGND
275k
CPH1, CPL1
BST, CPH2, CPL2
Inside REG
VM
BST
CPH2
CPL2
VM
Fig.11 I/O Circuit Diagram (Resistance values are typical ones)
Notes for use 1) Absolute maximum ratings Use of the IC in excess of absolute maximum ratings such as the applied voltage or operating temperature range may result in IC damage. Assumptions should not be made regarding the state of the IC (short mode or open mode) when such damage is suffered. The implementation of a physical safety measure such as a fuse should be considered when use of the IC in a special mode where the absolute maximum ratings may be exceeded is anticipated. 2) Storage temperature range As long as the IC is kept within this range, there should be no problems in the IC's performance. Conversely, extreme temperature changes may result in poor IC performance, even if the changes are within the above range. 3) Power supply pins and lines None of the VM line for the H-bridges is internally connected to the VCC power supply line, which is only for the control logic or analog circuit. Therefore, the VM and VCC lines can be driven at different voltages. Although these lines can be connected to a common power supply, do not open the power supply pin but connect it to the power supply externally. Regenerated current may flow as a result of the motor's back electromotive force. Insert capacitors between the power supply and ground pins to serve as a route for regenerated current. Determine the capacitance in full consideration of all the characteristics of the electrolytic capacitor, because the electrolytic capacitor may loose some capacitance at low temperatures. If the connected power supply does not have sufficient current absorption capacity, regenerative current will cause the voltage on the power supply line to rise, which combined with the product and its peripheral circuitry may exceed the absolute maximum ratings. It is recommended to implement a physical safety measure such as the insertion of a voltage clamp diode between the power supply and ground pins. For this IC with 2 power supplies and a part consists of the CMOS block, it is possible that rush current may flow instantaneously due to the internal powering sequence and delays, and to the unstable internal logic, respectively. Therefore, give special consideration to power coupling capacitance, width of power and ground wirings, and routing of wiring. 4) Ground pins and lines Ensure a minimum GND pin potential in all operating conditions. Make sure that no pins are at a voltage below the GND at any time, regardless of whether it is a transient signal or not. When using both small signal GND and large current MGND patterns, it is recommended to isolate the two ground patterns, placing a single ground point at the application's reference point so that the pattern wiring resistance and voltage variations caused by large currents do not cause variations in the small signal ground voltage. Be careful not to change the GND wiring pattern of any external components, either. The power supply and ground lines must be as short and thick as possible to reduce line impedance.
www.rohm.com (c) 2009 ROHM Co., Ltd. All rights reserved.
6/8
2009.06 - Rev.A
BD6735FV, BD6736FV
Technical Note
5) Thermal design Use a thermal design that allows for a sufficient margin in light of the power dissipation (Pd) in actual operating conditions. 6) Pin short and wrong direction assembly of the device Use caution when positioning the IC for mounting on printed circuit boards. The IC may be damaged if there is any connection error or if positive and ground power supply terminals are reversed. The IC may also be damaged if pins are shorted together or are shorted to other circuit's power lines. 7) Actions in strong magnetic field Use caution when using the IC in the presence of a strong magnetic field as doing so may cause the IC to malfunction. 8) ASO When using the IC, set the output transistor for the motor so that it does not exceed absolute maximum ratings or ASO. 9) Thermal shutdown circuit If the junction temperature (Tjmax) reaches 175C (BD6735FV Typ.) and 160C (BD6736FV Typ.), the TSD circuit will operate, and the coil output circuit of the motor will open. There is a temperature hysteresis of approximately 20C. The TSD circuit is designed only to shut off the IC in order to prevent runaway thermal operation. It is not designed to protect the IC or guarantee its operation. The performance of the IC's characteristics is not guaranteed and it is recommended that the device is replaced after the TSD is activated. 10) Testing on application board When testing the IC on an application board, connecting a capacitor to a pin with low impedance subjects the IC to stress. Always discharge capacitors after each process or step. Always turn the IC's power supply off before connecting it to, or removing it from a jig or fixture, during the inspection process. Ground the IC during assembly steps as an antistatic measure. Use similar precaution when transporting and storing the IC. 11) Application example The application circuit is recommended for use. Make sure to confirm the adequacy of the characteristics. When using the circuit with changes to the external circuit constants, make sure to leave an adequate margin for external components including static and transitional characteristics as well as dispersion of the IC. 12) Regarding input pin of the IC + This monolithic IC contains P isolation and P substrate layers between adjacent elements to keep them isolated. P-N junctions are formed at the intersection of these P layers with the N layers of other elements, creating a parasitic diode or transistor. For example, the relation between each potential is as follows: When GND > Pin A, the P-N junction operates as a parasitic diode. When GND > Pin B, the P-N junction operates as a parasitic diode and transistor. Parasitic elements can occur inevitably in the structure of the IC. The operation of parasitic elements can result in mutual interference among circuits, operational faults, or physical damage. Accordingly, methods by which parasitic elements operate, such as applying a voltage that is lower than the GND (P substrate) voltage to an input pin, should not be used.
Pin A Resistor Pin A N P N N Parasitic element P+ N P P+ N Pin B C B E B C E Parasitic element Other adjacent elements GND Transistor (NPN) Pin B
N
P+
P+
P substrate Parasitic element GND Parasitic element
P substrate GND GND
Fig.12 Example of Simple IC Architecture
www.rohm.com (c) 2009 ROHM Co., Ltd. All rights reserved.
7/8
2009.06 - Rev.A
BD6735FV, BD6736FV
Ordering part number
Technical Note
B
D
6
7
3
5
F
V
-
E
2
Part No.
Part No. 6735 : 8.0V power supply voltage 6736 : 9.0V power supply voltage 3.2A peak current
Package FV : SSOP-B20
Packaging and forming specification E2: Embossed tape and reel
SSOP-B20
6.5 0.2
20 11

Tape Quantity
0.3Min.
Embossed carrier tape 2500pcs E2
The direction is the 1pin of product is at the upper left when you hold
6.4 0.3
4.4 0.2
Direction of feed
( reel on the left hand and you pull out the tape on the right hand
)
1
10
0.15 0.1
1.15 0.1
0.1 0.1
0.1 0.65 0.22 0.1
1pin
(Unit : mm)
Direction of feed
Reel
Order quantity needs to be multiple of the minimum quantity.
www.rohm.com (c) 2009 ROHM Co., Ltd. All rights reserved.
8/8
2009.06 - Rev.A
Notice
Notes
No copying or reproduction of this document, in part or in whole, is permitted without the consent of ROHM Co.,Ltd. The content specified herein is subject to change for improvement without notice. The content specified herein is for the purpose of introducing ROHM's products (hereinafter "Products"). If you wish to use any such Product, please be sure to refer to the specifications, which can be obtained from ROHM upon request. Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production. Great care was taken in ensuring the accuracy of the information specified in this document. However, should you incur any damage arising from any inaccuracy or misprint of such information, ROHM shall bear no responsibility for such damage. The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM and other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the use of such technical information. The Products specified in this document are intended to be used with general-use electronic equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices). The Products specified in this document are not designed to be radiation tolerant. While ROHM always makes efforts to enhance the quality and reliability of its Products, a Product may fail or malfunction for a variety of reasons. Please be sure to implement in your equipment using the Products safety measures to guard against the possibility of physical injury, fire or any other damage caused in the event of the failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM shall bear no responsibility whatsoever for your use of any Product outside of the prescribed scope or not in accordance with the instruction manual. The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). ROHM shall bear no responsibility in any way for use of any of the Products for the above special purposes. If a Product is intended to be used for any such special purpose, please contact a ROHM sales representative before purchasing. If you intend to export or ship overseas any Product or technology specified herein that may be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law.
Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us.
ROHM Customer Support System
http://www.rohm.com/contact/
www.rohm.com (c) 2009 ROHM Co., Ltd. All rights reserved.
R0039A


▲Up To Search▲   

 
Price & Availability of BD6736FV

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X